

REDUCING THE COST OF GROUND SYSTEMS & OPERATIONS
THROUGH SOFTWARE RE-USE

Chris Gilbert Wim van Leeuwen
 Astrium GmbH, Space Infrastructure European Space Agency
 Business Development, Operations Head of Ground Infrastructure Implementation
 Christopher.Glbert@astrium-space.com Wim.van.Leeuwen@esa.int

ABSTRACT

The International Space Station (ISS) is the largest single
international undertaking in space and is collectively man-
aged by the space agencies of the USA, Europe, Japan,
Russia and Canada. The principal elements of the Euro-
pean contribution are the Columbus pressurized module
and the advanced transfer vehicle (ATV). On-orbit activi-
ties in the Columbus module are supported by an extensive
ground command and control infrastructure serving
Columbus system operations and the user community
needs. A central feature of this infrastructure is the re-use
of computer software developed initially to support the
integration and checkout of the Columbus module. Known
as CGS (Columbus Ground Software), this software was
conceived as an end-to-end data system from which all the
Columbus development, simulation and software test
facilities have been derived. Key to the design of CGS is a
single Mission Data Base (MDB) as the central engin-
eering knowledge repository. CGS software is re-used in
the Monitoring & Control Subsystem (MCS), which forms
the core of the Columbus operations control center (COL-
CC). This paper reviews the architecture of the CGS soft-
ware, and its application to the Columbus ground segment
during development and subsequently for operations.

1. INTRODUCTION

The launch of the Columbus module, currently planned for
October 2004, and its subsequent installation on the Inter-
national Space Station, will mark the end of a long period
of development and preparation of the module and its pay-
loads. It will also mark the beginning of a period of com-
pletely new activities with new challenges - on-orbit oper-
ations. Under contract to ESA, the European Space
Agency, a comprehensive ground system is being estab-
lished in preparation for the operational phase. The Colum-
bus orbital laboratory is the tip of an extensive control and
communications hierarchical infrastructure that integrates
the space segment operations needs and the payload oper-
ation needs of the user community (Fig. 1).

The resulting network provides appropriate access to the
infrastructure at various levels of involvement. The net-
work is distributed across many European countries, en-
abling scientists from participating ESA member states to
maintain real-time contact with their experiments. There
are several reasons for implementing a common software

Columbus
Space Segment

COL-CC
Columbus Flight Control

Payload Ops. Coordination

On-Site Engineering Support

Off-Site Engineering Support
Astronaut Training

User Support & Operations Centers (USOC)
Facility Responsible Center (FRC)

Facility Support Center (FSC)
User Home Base (UHB)

Figure 1: Columbus Operations Hierarchy

operations concept to support this diverse user community,
in particular to guarantee consistency between develop-
ment activities and operations. This is achieved by en-
suring that data qualified and verified in development is re-
used as the basis for mission control. An equally relevant
reason is to minimize cost over the project life cycle. Cost
reductions arise primarily by avoiding duplicated develop-
ment efforts, but also from:
- re-use of test procedures, displays and models between
facilities,
- reduced training costs for staff operating the different
facilities, and
- by taking ground software off the critical path of the
schedule, thereby gaining schedule margin and reducing
program risk.

2. CGS IN THE DEVELOPMENT PHASE

2.1. CGS Software Architecture: The basic modular archi-
tecture of CGS, showing the main functional sectors as
they were originally conceived, is depicted schematically

in Fig. 2. This modular approach with its building blocks
on a common foundation of infrastructure and data base
has enabled the re-use of the CGS from initial application
as EGSE to configure all other Columbus ground facilities,
including a payload verification facility, crew trainers, and
simulators for compatibility tests with other ISS elements.
In addition, this capability is exploited in the mission
control system, all eleven Columbus payload elements, and
for the Columbus simulator used to support the operations
preparation.

Mission Database (MDB)

CGS Infrastructure (CGSI)

Software
Development
Environment

(SDE)

Mission
Preparation

Services
(MPS)

Verification
Integration

and
Checkout
Services
(VICOS)

Core
Simulation
Services

(CSS)

Database & Timing Services
(DBS & TSS)

Figure 2. CGS schematic architecture

Underlyin al oper-g the applications modules is a commerci
ating platform available on Linux or Sun Solaris running
Oracle. A number of specialised tools have been developed
to manage the applications as the environment has evolved.
2.1.1. The CGS Infrastructure provides an essentially
COTS-based hardware and software platform tailored to
support specific applications standards such as PUS and
ECSS. The current version runs on SUN / Solaris work-
stations or on Linux / PC.
2.1.2. The Mission Data Base runs on Oracle 8/9 and Unix,

 and distri-

ecking, and

ides the engineering knowledge

optionally on Linux, providing a stable and reliable
platform. The main functions of the MDB are:
- centralized data and data definitions, storage
bution to all facilities;
- overall consistency ch
- configuration control.
In short, the MDB prov
repository with which the simulation, verification and
checkout activities are supported. Fig. 3 shows the basic
architecture of the MDB:

Unix

Oracle
Mission Database

Interactive Data Entry
Flexible Tool Invocation

Report
Generator

Consistency
Checker

Batch Data EntryData Dictionary
Application

Import
Export

Data API

Load SCOE

Figure 3: Mission Data Base Architecture

The data-base is populated at the lowest level by end items.
These are real data entities, and include: all measurement
and command end items, and their attributes; calibration
and limit definitions; telecommand and telemetry packet
layouts; synoptic display definitions; automated checkout
sequences; interactive sequences; test results (log events,
messages, raw data). Its architecture provides a number of
internal tools enabling data entry, reporting, preparation of
checkout and simulated sessions, off-line generation of
onboard and flight software images. In particular, all end
items are under the control of an automatic configuration
function. This function is of central importance to the
applicability of CGS throughout the project lifecycle. The
MDB installation in the NASA MBF currently supports
over 1 million end items. The Columbus orbital laboratory
MDB will contain around 35,000 end items. Fig. 4 shows
an example of the end item tree structure. The tree is
divided into a system tree and user trees. Responsibility for
maintaining each user tree resides with the appropriate
user. He has considerable freedom in defining his end
items and only needs to conform to path and interface
definitions. Logical groups of end items are collected into
configuration control units (CCU). The combination of
CCU and end items enables the parallel configuration con-
trol of consistent configurations (i.e. Engineering Model
and Flight model).

Figure 4: End Item Tree

Interactive data entry is used for online data entry and re-
trieval sessions by a user at a work station. A utility for
batch data entry simplifies the procedure when entering
large volumes of data in non-interactive mode. Batch data
entry is also used for data exchange with external data-
bases. Before formal release, the database contents (e.g.
flight configuration data) undergo several consistency
checks to ensure overall data integrity.
CGS is itself a distributed software system. This means
that the database, the human computer interface (HCI)
software and the real-time test execution kernel are sep-
arate software modules which can be run on dedicated
computer systems. This architecture enables the overall
performance of CGS to be scaleable simply by adding or
removing computers as appropriate. The configuration
database concept enables parallel, distributed data develop-
ment at different geographic locations, and for data ex-
change between these locations. Subsequent integration of
data at the system integrator's site is a built-in capability of
CGS. This is achieved by an end-item ownership concept
and ensured by restricted security and access mechanisms.
2.2. Design and Development Phase: The life cycle support
provided by CGS during the design and development
phase consists of:
Engineering support for requirements (structured analysis
and design method) and interface control documents;
Software design support including OOD Methodology for
architectural design, detailed design, and program design
of application software;
Software coding and testing support including syntax
sensitive editing for Ada and C source code and software
compiler systems;
additional, optional software development tools which can
be integrated through a standard generic compiler and tool
interface;
Generation of automated procedures written in the User
Control Language (UCL) supported by dedicated editors
and compilers for execution in the CGS based ground
system or in the onboard system;
Generation of active (synoptic) displays for use in the CGS
based ground system or onboard the target system,
Generation of simulation models for execution in the CGS
based ground system;
Software and document handling, and configuration man-
agement.
2.3. CGS Support for Integration, Testing and Qualifi-
cation
2.3.1. The Simulation Function Block:
Simulation plays a special role throughout the system life
cycle. The simulation function block simulates missing
hardware and software components during the early inte-
gration phase of target systems.

During testing in the conceptual phases, it enables the early
check of alternative solutions and supports rapid proto-
typing. During integration, components and subsystems
may be tested by simulation of missing components or by
simulation of the remaining system. While hardware is in
production, pre-programmable automatic testing on the
component level, subsystem level, and system level re-
duces the effort for qualification. During the operational
phase, simulation enables revision in case of unplanned or
unforeseen events. Simulation additionally supports fault
detection, isolation, and recovery.
The simulation environment enables the definition of oper-
ator interfaces with active displays, menus, and switches.
By linkage of these interfaces with the simulated functions
complete simulators for training purposes are created with
the system features already defined and realized during de-
velopment. Cooperation with features of the test configur-
ation, e.g. the active graphical displays, enables the
generation of training facilities with simulated real res-
ponse capabilities. Virtual operation boards can also be
realized.
The creation of a simulation model is supported by an easy
to use graphical model development environment. Prede-
fined model function libraries are provided. User specific
libraries may be created to include additional model
functions implemented either by decision tables or Ada or
C code.
Executable simulation code can be generated auto-
matically, independent of the model abstraction level. The
simulation model source and the executable simulation
code are stored in the MDB.
Through the graphical model source, the user can monitor
and control simulation during execution. The events and
results of the model execution are stored in the test result
database for evaluation using the CGS test software.
The adaptation of the generic CGS simulation to the target
system’s I/O-Controllers is performed by special appli-
cation software in the Command and Measurement Adap-
tation System (CMAS) using CGS API (Application Pro-
gramming Interface). This results in the capability for
hardware-in-the-loop tests.
2.3.2. The Test Function block:
The test function block supports test operations and auto-
matic testing and monitoring of the unit under test. Testing
of components, subsystems, or the target system, meet
several goals:
- demonstration and verification of functionality
- fit check to other items
- system test
- certification of fulfillment of requirements and customer
acceptance

The facilities for testing hardware and software compon-
ents require software to operate those facilities, to specify
the tests, to perform the tests and to analyze the test results.
The implementation of a large, distributed test environ-
ment with special test node computers allows for thous-
ands of active end items to be involved in real time tests.
The integrated language system avoids the necessity for
programming tests, enabling the operators to focus fully on
the test itself.
The test function block of CGS is itself a distributed soft-
ware system. In that module, the database, the HCI
software, and the real-time test execution kernel run on
separate computers. Due to this architecture the overall
performance of the test system is scaleable by simply
adding or removing computers.
The CGS test function block is driven by the test defin-
itions stored in the CGS Master Database. It provides a
generic data and control interface to the UUT and all ser-
vices required for real-time data processing.
Data stored in the CGS Master Database consists of the
command and measurement list, ground active displays
(synoptics), automated procedures written in User Control
Language (UCL), and command sequences written in High
Level Command Language (HLCL) to interactively control
the test system.
The command and measurement list is entered into the
CGS Master Database either through the interactive user
interface or by way of the batch data entry capability.
The active displays are generated using the CGS Ground
Window Definition Utility. This utility is based on the
commercial tool "Dataviews" but it has been customized to
the CGS needs and concepts.
The test system may be controlled in various ways:
by interactive control via graphical user interface (point
and click) including previously generated active displays;
or
by interactive control via HLCL keyboard commands or
HLCL command sequences; or
by automatic control via compiled ground automated
procedures written in UCL.
HLCL and UCL have the same syntax, however UCL
cannot be used in an interactive way whereas HLCL can.
HLCL is an interpretative command language.
The events and results of a test execution session are stored
in the test result database. Here they are available for
parallel or later result evaluation using the CGS Test Eval-
uation Software (TES).
The CGS Test Evaluation Software (TES) provides all
services to evaluate data generated and stored in the test
result database. It provides built-in capabilities for data
selection, calibration, and presentation, and it serves to

generate data sets compatible with the MS Excel spread-
sheet format.
For a distributed system such as CGS, it is necessary that
all the computer clocks are highly synchronized. A CGS
time service synchronizes the local computer clocks with a
master clock. The master clock can be either an external
master time unit or an internal selected computer clock
(e.g. the local computer clock of the master test processor).
In addition, the CGS time services provide and maintain a
second time, the Simulated Mission Time (SMT) an
artificial onboard or mission or test session time.
It becomes evident that the database of qualified and
verified end items is an important source of engineering
data which could with advantage be exploited in the oper-
ations phase. Fig. 5 illustrates the philosophy:

SVF

Flight SW
Develop.

CCS

Satellite
EGSE

CCS

Mission
Control
Center
(TM/TC

Database)SVF

Flight SW
Develop.

CCS

Instrument
EGSE

Instrument
Develop.

CCS

BUS
EGSE

Space-
craft
AIT
CCS

P/L EGSE

Payload
AIT

CCS

S/S
Develop.

CCS

Subsystem
EGSE

Instrument
Develop.

CCS

Subsystem
EGSE

Database
(S/C and

Operation
Data)

Spacecraft

Payloads

Subsystem & Instrument Development and Test S/C and P/L AIT System AIT

System
AIT

Database
(S/C and P/L AIT Data)

Operation

CCS

Mission
Control
System

Figure 5: Vertical Integration Concept

3. CGS IN THE OPERATIONAL PHASE
As mentioned in the introduction, the Columbus ground
segment comprises ground facilities providing technical
support to Columbus operations, and a European-wide user
network. Fig. 6 provides an overview of the locations of
these facilities.

Bremen
INT-1, INT-2
SRF, ETM/

RLTF
GEN ENV
MCS RF

CD- MCS RF
SDDF

DMS STF

Cologne
MUSC, EAC,

TRE

Nordwjik
ERASMUS

Brussels
B-USOC

Trondheim
N-USOC

Oberpf.
COL-CC,
TQVS

Madrid
IDR-UPM

Toulouse
CADMOS

Zurich
ETH-

BIOTESC

Naples
MARS

Copenhagen
DAMEC

Houston
TRU, SVF

Figure 6: Location of Columbus Ground Facilities and

User Centers

3.1. The Scope of the Columbus Ground Network: The
focal point of this network is the Columbus Control Center
(COL-CC), an ESA facility hosted by the German Space
Operations Center (GSOC) in southern Germany. The
software kernel of the COL-CC, the Monitoring & Control
Subsystem (MCS), is based on CGS, its functionality
expanded for control centre operations. The TQVS
(Training, Qualification & Validation Subsystem) flight
system simulator – part of COL-CC and used for ground
operator training – will also be based on CGS. In addition,
the following ground support systems use CGS software:
– Columbus Electrical Ground Support Equipment
(EGSE),
– Columbus software integration and validation facilities
(SITE),
– Crew trainers (TRE & TRU),
– Columbus flight system simulator at the NASA Software
Development and Integration Laboratory (Software Verifi-
cation Facility),
– the Columbus facility for payload compatibility tests
(RLTF).
In its entirety, as shown in Fig. 7, the ground system
network also includes the ATV Control Center.

MCC
Houston
MCC

Houston

COL-TRECOL-TRE
ATV-EGSE

Kourou
ATV-EGSE

Kourou

AGCS
ATV-Simulator

AGCS
ATV-Simulator

MCC
Houston
MCC

Houston

WSWS

TDRSTDRS
TDRSTDRS

HOSC

COL-EGSECOL-EGSE

ETM/RLTFETM/RLTF

ATV-FSFATV-FSF

ATV-ACTATV-ACT

ATV-EGSEATV-EGSE
ATV TM/TC as (TDRS-Link)

CLTU/CADU’s over TCP/IP

COL-TRUCOL-TRU

TQVS
COL-Simulator

TQVS
COL-Simulator

USOC
USOC

USOC
USOC

USOC

SSTFSSTF

MCC-MMCC-M

ESTEC
OMT

COL-CCCOL-CC

EAC

Bremen

Les
Mureaux

NASACrew

training facility

ATV-CCATV-CC

Figure 7: Columbus Ground Network Architecture

CGS software is also used by NASA at its ISS Mission
Build Facility in Houston, TX, and by ESA for DMS-R,
ATV and other satellite EGSE systems
3.2. CGS Functionality for Columbus-CC: Re-using the
CGS-based MCS in COL-CC, together with the qualified
Mission Data Base from the Columbus module checkout
activities substantially reduces the risks of incompatibility
between the ground and flight systems. The expanded CGS
architecture providing the necessary Monitoring & Control
functions is shown in Fig. 8.

Mission Database (MDB)

CGS Infrastructure (CGSI)

Software
Development
Environment

(SDE)

Mission
Preparation

Services
(MPS)

Verification
Integration

and
Checkout
Services
(VICOS)

Core
Simulation
Services

(CSS)

Database & Timing Services
(DBS & TSS)

Monitoring
& Control

System Tools
(MCS)

CGS
Interface
Server
(CIS)

Figure 8: Extended CGS/MCS Architecture

CGS contains all the necessary components to support the
operational phase of the space segment, comprising:
- the software development environment for controlled
development of onboard software (e.g. flight automated
procedures),
- simulation for software verification before transmission
to the flight system, and
- the check-out function as a basis for command and moni-
toring of the flight system.
- infrastructure for remote control is also provided in CGS-
based systems.
The COL-CC will operate Columbus in close cooperation
with the Space Station Control Center, Houston (MCC-H)
and the Payload Operations & Integration Center (POIC) at
the Huntsville Operations Support Center (HOSC). It will
also provide support functions for payload operations
including:
- routing of telecommands from the payload operations site
to the Columbus module,
- distributing support data to the USOCs,
- archiving low and medium rate telemetry, telecommands,
audio and video data, and
- supporting local video rooms.
Fig. 9 shows a schematic overview of the Columbus-CC
design.

Note:
Consoles include
local TM/TC and
ISS parameters
processing

DaSSEIS

Telemetry
Router and

Archive

Telecommand
Router and
Multiplexer

Telecommand
Router and
Multiplexer

Telemetry
Processed Data

Router and
Archiver

Columbus MCS consoles

Including local MCS functionality

Mission Preparation tools

MDBRDB

Tools

Central
TM processor

Central
TM processor

MCC-H MCC-H

HOSC

MCC-M

EAC

ESC’s

USOCs

Figure 9: Columbus-CC schematic overview

3.3. Distributing the MCS Software to the Users: The ex-
ploitation of the Columbus space segment can only be
successful if all members of the user community are
assured of optimum access to their experiment. The next
logical step, therefore, is to provide a common monitoring
& control software system in each User Center. This
variant, known as Columbus Distributed MCS (CD-MCS)
is essentially an individual CC console at each User
Center, and will ensure a seamless operation and data
exchange between each User Center and the COL-CC.
This approach has a number of inherent advantages. It
provides for:
-. Compatibility with COL-CC operations, interfaces and
data presentation;
- Common and centralized maintenance with other
Columbus ground support facilities (COL-CC, Crew
trainers, EGSE, etc),
- Overall MDB based configuration control and unique
data definitions (TC, TM calibration curves, ISS processed
data, etc),
- Direct use of ISS processed parameters and related data
definitions from the Columbus Mission Database
(including mapping between DaSS naming “UMI” and
NASA PUI’s),
- Cost-effective solution
3.4. The USOC Network: The User Support and Oper-
ations Centers currently planned match the payload
facilities and experiments supported by ESA and the mem-
ber states. The Centers operate at different levels according
to the tasks they undertake. A Facility Responsible Center
(FRC) has full responsibility for overall management of a
specific payload facility in Columbus. A Facility Support
Center (FSC) provides support for certain functions of an
ESA-developed multi-user facility. Ultimately, an individ-
ual user will have access to the ground system from his
User Home Base (UHB). The pressurized payloads and
primary USOC assignments are as follows:
Biolab, operated by MUSC in Cologne as the FRC, with
support by BIOTESC in Zurich;
Fluid Science Facility (FSL), operated by MARS in Naples
as the FRC, with support by IDR in Madrid;
European Physiology Module (EPM), operated by
CADMOS in Toulouse as the FRC with support by
DAMEC in Copenhagen;
European Drawer Rack (EDR), operated by the
ERASMUS center at Estec in Noordwijk as the FRC, with
support by the Belgian USOC and the DUC;
Materials Science Laboratory (MSL), furnaces operated by
MUSC and CADMOS as FRC with support by each other;
European Modular Cultivation System (EMCS) operated
by the Norwegian USOC in Trondheim.

3.5. CD-MCS Installation: The software/hardware package
being developed for the USOCS is shown schematically in
Fig. 10.

IGS racks MCS rack

DaSS Server

CD-MCS Console including
Video conferencing and
COL-CC WEB applications

Up to 5 VoCS key-sets
with each two head-
sets and food-switch

Video Codec +
monitors

CD-MCS Console Including WEB
applications and off-line tools
including MDB tools

LINUX based workstations/PC’s

Network interface

(Ethernet interface box)

Master Timing Unit
(GPS) (option)

MCS Server

Figure 10: CD-MCS package for USOC Installation

The CD-MCS provides the following standard MCS
functions:
Telemetry processing (acquisition, calibration, monitoring,
exception handling,
Telecommands (from different sources e.g. manual com-
mand stack, synoptic displays, automated procedures, key-
board inputs (HLCL), SAS (special application software),
- ISS, GS and COL-CC processed parameter handling (re-
ceiving and delivering processed parameters),
- MMI including synoptic displays, alphanumeric displays,
exception displays etc,
- Automated procedures executer including debugger,
- Archiving and play-back,
- Operations preparation tools (for procedures, command
stacks editor, alphanumeric displays etc.),
- Evaluation tools (dumps, histograms and “MS-Office”
compatible file outputs),
- MDB and related tools (including Payload-DB, an MDB-
derived tool),
- P/L specific additions (MDB additional type, TES com-
mand update and private header support),
- On-board time synchronization with COL-CC,
- Step back processing,
- various CGS Payload adaptations.

4. CONCLUDING REMARKS

The widespread implementation of the Columbus Ground
Software system and its unique Mission Data Base forms a
rational basis for cost-effective mission and payload oper-
ations over the extended lifetime of the International Space
Station. The high safety standards necessary for safe and
productive exploitation of the ISS are an inherent part of
this approach since all relevant data, once qualified and
verified, are securely protected and used as a common
source of engineering information throughout the ground
and flight segments. Over the lifetime of Columbus, plan-
ned maintenance and upgrade activities will provide reg-
ular productivity improvements and enable utilization
goals to be realised. Combining this superior technical
performance with reduced implementation costs is the key

to future progress in this and many other fields of en-
deavour.
Fig. 11 symbolizes this "life cycle" approach to reducing
costs.

EGSE
System Integration

SITE
Flight S/W

Development
& Test

SDDF
Development
Ground S/W

Simulator
System &
SS Models

ETM
Avionics &
Flight S/W

Training
Facilities
Cologne,
Houston

SDIL
(SVF, MBF)

NASA, Houston

RLTF
Payload
Integration

COL-CC FRC’s UHB’s

C D – M C S
MCS

USOC Ground Network

FSC’s

Figure 11: The CGS product life cycle support concept

5. BIBLIOGRAPHY

[1] Hummel, J. & Barth, F.-H. Columbus Ground Software
for Development & Operation of the ISS. Technical note.
[2] van Leeuwen, W. ESA's Manned Spaceflight Ground
Segment. ESA Technical Note, December 2001
[3] Chesson, R. The ISS Operations & Exploitation Pro-
gram. ESA Bulletin No. 110, May 2002
[4] Graf, J. ISS Operations Preparation & Exploitation.
Unpublished ESA Technical Note, September 2002
[5] van Leeuwen, W. CD-MCS for USOC Outfitting. Un-
published ESA technical note, April 2003.

